US009229842B2

a2z United States Patent (10) Patent No.: US 9,229,842 B2
Broda et al. 45) Date of Patent: Jan. 5, 2016
(54) ACTIVE WATERFALL CHARTS FOR 5,945,986 A 8/1999 Bargar et al.
CONTINUOUS, REAL-TIME VISUALIZATION 00058 & %888 galdwm il
,092, quires et al.
OF WEBSITE PERFORMANCE DATA 6134582 A 10/2000 Kennedy
6,317,786 B1 11/2001 Yamane et al.
(75) Inventors: Tal Broda, Sunnyvale, CA (US); Darrell 6,434,513 Bl 8/2002 Sherman et al.
Esau, Santa Clara, CA (US); Michael 6,542,163 B2 4/2003 Gorbet et al.
Hemmert, Scotts Valley, CA (US) 6,560,564 B2 5/2003 Scarlat et al.
6,563,523 Bl 5/2003 Suchocki et al.
. . 6,601,020 Bl 7/2003 Myers
(73) Assignee: SOASTA, Inc., San Jose, CA (US) 6,738,933 B2* 52004 Fraenkeletal. ... 714/47.2
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 308 days. OTHER PUBLICATIONS
(21) Appl. No.: 13/492,249 Chester et al., Mastering Excel 97, 1994, Sybex, 4th Ed., pp. 1016,
136-137, 430, 911, 957-958.
(22) Filed: Jun. 8, 2012 (Continued)
(65) Prior Publication Data
US 2012/0246310 Al Sep. 27, 2012 Primary Examiner — Scott Baderman
Related U.S. Application Data Assistant Examiner — Matthew G McVicker
. L L (74) Attorney, Agent, or Firm — The Law Offices of Bradley
(63) Continuation-in-part of application No. 12/804,338, 1. Bereznak
filed on Jul. 19, 2010. ’
(31) Int.Cl (57) ABSTRACT
GO6F 17/00 (2006.01)
GO6F 11/34 (2006.01) A processor-implemented method includes providing an ana-
(52) US.CL lytic dashboard with a graphical user interface (GUI) that
CPC ... GO6F 11/3495 (2013.01); GO6F 11/3414 outputs aggregated results streaming in real-time of'a load test
(2013.01); GOGF 11/3428 (2013.01); GO6F performed on a target website. The load test consists of a
. . . 2201/875 (2013.01) plurality of virtual users simulated by one or more load serv-
(58) Field of Classification Search ers that execute a test composition on one or more webpages
CPC . GOGF 11/00; GOGF 11/3428-11/3433 of the website. A waterfall chart is produced on the analytic
USPC B e 715/736 dashboard that includes a plurahty of timeline bars. Each of
See application file for complete search history. the timeline bars represents an aggregated result for a
(56) References Cited resource of the one or more webpages across all of the virtual

U.S. PATENT DOCUMENTS

5,414,809 A *
5,724,525 A

5/1995 Hoganetal. 715/765
3/1998 Beyers et al.

users. The timeline bars change in real-time as the load test
progresses.

22 Claims, 9 Drawing Sheets

61
!
E1hd
T
7 ML)
IS ML
i, IR
o, W5 T
e ML
FEMTL)
o, .
i RERS
EECMAET
e FI
o F LY
o e it
Soen ML
£y 7 £
ESIry KEL
i35
FITS L)
B T
720
Fa LN
ST

soier. . 2o Ao
S T e
gl
i i o
65 : v

iy,
fecsime Wena wiine

US 9,229,842 B2
Page 2

(56)

6,792,393
6,817,010
6,898,556
6,959,013
6,975,963
7,050,056
7,133,805
7,216,168
7,334,162
7,376,902
7,464,121
7,478,035
7,548,875
7,587,638
7,594,238
7,607,169
7,630,862
7,685,234
7,689,455
7,693,947
7,725,812
7,743,128
7,757,175
7,844,036
8,015,327
8,166,458
8,291,079
8,448,148
8,464,224
8,479,122
8,583,777
2002/0138226
2003/0074161
2003/0074606
2003/0109951
2003/0182408
2003/0195960
2004/0010584
2004/0039550
2004/0059544
2004/0064293
2004/0119713

References Cited

U.S. PATENT DOCUMENTS

Bl
B2
B2
Bl
B2
B2 *
Bl
B2
Bl
B2
B2
Bl
B2
B2
B2
Bl
B2 *
B2
B2
B2
Bl
B2
B2
B2
Bl
B2
Bl
Bl
B2
B2
Bl
Al
Al
Al
Al
Al*
Al
Al
Al*
Al
Al
Al*

*

9/2004
11/2004
5/2005
10/2005
12/2005
5/2006
11/2006
5/2007
2/2008
5/2008
12/2008
1/2009
6/2009
9/2009
9/2009
10/2009
12/2009
3/2010
3/2010
4/2010
5/2010
6/2010
7/2010
11/2010
9/2011
4/2012
10/2012
5/2013
6/2013
7/2013
11/2013
9/2002
4/2003
4/2003
6/2003
9/2003
10/2003
1/2004
2/2004
3/2004
4/2004
6/2004

Farel et al.

Aizenbud-Reshef et al.

Smocha et al.

Muller et al.

Hamilton et al.

Meyringerccce.. 345/440
Dankenbring et al. 702/186
Merriam

Vakrat et al.

Lueckhoff

Barcia et al.

Wrench et al.

Mikkelsen et al.

Shah et al.

Takahashi

Njemanze et al.

Glasetal.ccoovevenne, 702/186
Gottfried

Fligler et al.

Judge et al.

Balkus et al.

Mullarkey

Miller

Gardner et al.

Zahavi et al.

Lietal.

Colton et al.

Kolawa et al.

Dulip et al.

Hotelling et al.

Boyle et al.

Doane

Smocha et al.

Boker

Hsiung et al.

Hu o 709/223
Merriam

Peterson et al.

Myers
Smocha et al.

Hamilton et al.

Meyringerccce.. 345/440

702/186

2004/0205724 Al 10/2004 Mayberry
2005/0102318 Al 5/2005 Odhner et al.
2005/0182589 Al 8/2005 Smocha et al.
2005/0216234 Al 9/2005 Glas et al.
2005/0278458 Al 12/2005 Berger et al.
2006/0031209 Al 2/2006 Ahlberg et al.
2006/0075094 Al 4/2006 Wen et al.
2006/0229931 Al 10/2006 Fligler et al.
2006/0271700 Al 11/2006 Kawai et al.
2007/0143306 Al* 6/2007 Yangc..ccoecvvvcnncnnn 707/10
2007/0232237 Al 10/2007 Croak et al.
2007/0282567 Al 12/2007 Dawson et al.
2007/0283282 Al 12/2007 Bonfiglio et al.
2008/0059947 Al 3/2008 Anand et al.
2008/0066009 Al 3/2008 Gardner et al.
2008/0147462 Al 6/2008 Muller
2008/0189408 Al 8/2008 Cancel et al.
2009/0077107 Al 3/2009 Scumniotales et al.
2009/0271152 Al 10/2009 Barrett
2009/0300423 Al 12/2009 Ferris
2010/0023867 Al 1/2010 Coldiron et al.
2010/0057935 Al 3/2010 Kawai et al.
2010/0115496 Al 5/2010 Amichai
2010/0198960 Al 8/2010 Kirschnick et al.
2010/0250732 Al 9/2010 Bucknell
2010/0251128 Al 9/2010 Cordasco
2010/0333072 Al* 12/2010 Dulipetal. ...cccccevvnne. 717/128
2011/0066892 Al 3/2011 Gardner et al.
2011/0119370 Al 5/2011 Huang et al.
2011/0130205 Al 6/2011 Cho et al.
2011/0202517 Al 8/2011 Reddy et al.
2011/0282642 Al 11/2011 Kruger et al.
2012/0017210 Al 1/2012 Huggins et al.
2012/0023429 Al 1/2012 Medhi
2012/0101799 Al 4/2012 Fernandes
2012/0314616 Al 12/2012 Hong et al.
2013/0031449 Al 1/2013 Griffiths et al.

OTHER PUBLICATIONS

Malan et al. “An Extensible Probe Architecture for Network Protocol
Performance Measurement”, IEEE, Oct. 1998, pp. 215-227.

Jamin et al. “A Measurement-Based Admission Control Algorithm
for Integrated Service Packet Networks”, IEEE, 1997, pp. 56-70.

* cited by examiner

U.S. Patent Jan. 5,2016 Sheet 1 of 9 US 9,229,842 B2

Target Website 12

g
b
w
Bmen,
k)
=
p -
5 f
2 X /%
& D
m Q:.'
® v, W—
o A l"%.".;'l'f
b A Ay
aQ> .f)‘i(
= + S350)
b b anad
a3 e G h el
1 i
fons} &] -
o D o ! -~ .
=% — o™
w0 [— o
£ 3 B o= ~
B @ g ®
§8 fg¢ -
[« TN g Bt
3 S
B @ < L
S = &~
@
[7]
ol
S
I
s
0
i3
o
T N
@ 2 S \//
& s <
& s L N
& g% s 2
& 3 35
@ - @
o <
3 =

(¥ o]
Al
k]
=
vy
8
=

U.S. Patent Jan. 5,2016 Sheet 2 of 9 US 9,229,842 B2

Database Servers 14

FIG. 2

US 9,229,842 B2

Sheet 3 of 9

Jan. 5§, 2016

U.S. Patent

S0UESUl (sonkeuy 1581
ey [euLEey)
. 195MOIg
g2 o

US 9,229,842 B2

Sheet 4 of 9

Jan. 5, 2016

U.S. Patent

£ —

b~

Wirtual Users

Virtoal Users

pPaAIBIEY 9 JUBS SJAG "SA S4aS[] [BALIA

JUNOT) J0.LT] "SA SIaS{} [BNLIA

iv

[hiaba §

Qe

Genee BBl 0 1

I3

#99'GH

\ g5

Lo

-1

,M LT wnu.
S . v - v ogs
GE5 0L = - LY

SIA5[) [ENLHA "SA 9jEY pUIg
T :mmu?@ ey nw‘%‘&@p@ %EuSuaw.,wmm\r@m,wm& T B i
paddng Wi SGLL LRy
e A T3 10ny

.a.ss.w |

saliossay “ e u

o

U.S. Patent Jan. 5,2016 Sheet 5 of 9 US 9,229,842 B2

Within Each Load Server, Calculate Aggregated Test
Results Periodically {€.9., Second-By-Second)

|

Send Aggregated Test Result Data To Analytic Server
Periodically {e.g., Every Five Seconds)

|

At Each Analytic Server, Aggregate The Agaregated
Test Result Data Received From Each Associated |~ 53
L.oad Servers

|

Aggregate The Aggregated Data Produced By Each
Analytic Server At The System-Wide Data Store In - |~ 54
Real-Time

— 51

FIG. 5

US 9,229,842 B2

Sheet 6 of 9

Jan. 5, 2016

U.S. Patent

9 Ol

\....-—\\

. s
il 3
A LG p L, ¥ 7 el
R 31187 {5337 BRI
i3 Al 5 R I bt sV
aHre Bhild BT R s ¥ e
Eiid] G680 ¥
geryy A) sy P o
T i3 288 BRI
Lok :
3] @i ¢ 2 ¥ i
2H 5T ilany y JHECS
Sy 35]
ez L BRSRIREOE
A s e
BE B
P Ty
e £ 40t s i R
FEOTE B
Bits ELA 3 e sty ooyt B
% 1Y 2t O HASSEIAYLS Gt
1 03 0y R
GRLS DHSLIGNG Sts,
- - g 2 e
g RIS e0s3 BB
4 i TR
T ¥
E ¥ p g ey G
El SRS i tgsgEsvos B My

LR s iy
HeH] [ELBIEAL Ayndessty justiel dyy

wmw @ PHRDUGHEE ABI,

(== (H] {5} [<]®] o] (218 < (@] (<[]

® woe v a8 Lo 8] 4150 PNOI)
AN MINERGIR EEE 2L W51 A W B e D

§ e i

By gty DGR gt

FELPRIS YLEYOS

US 9,229,842 B2

Sheet 7 of 9

Jan. 5, 2016

U.S. Patent

L Ol

oy
X

SN Y S A L

ST A

Ll AbEE
Ly $ Loy
3B

LG R

a T 3185

¥ v o UGE

o PEh 3L 7 b L SRS

5% g7 LY RHREL IS A,

SR EY R R SR SRR Tty A7y 150 LT ELFIRRR S A
LRGN B, R R R T e PR HSE

VAR

L GE055E

”
V00

) YA
Sy Sy 3R L B RS G

3508 T e .

5wl B A
[ei g sl =¥ Y
Aymzaay wiatiagg 4D

{003 BSOS A

paseg A f

@“mml_rmncmu

RILPAD YIBYGE @ \ SO0

US 9,229,842 B2

Sheet 8 of 9

Jan. 5, 2016

U.S. Patent

8 Ol

R

SRR RO

AR BISERNY

% 0

WS OHREPEYS $R

s

s IR S0 BIERERD T
b7 ! 5 WY I RISCLT AR
“peasite S R SROS

EEGe HAYEE s BICEIRIRE AT IS
RSSO diksioe-Gay 13y SHCRERIARGS WA

135
Rl LI DAPEBITOET A

30

4

Bk

o R

AR ED,

WY SRRIEERE A

3 §e
LR 0

: s ey 130

YOS M

poet o)
=

-

R

&1 BB

peiy g aactonyy B8

L
AL Sty B 9 BRHS

o el iy 30 D OXGLSELS O,
1 I A T s WOE BISCPIRTS
A7 L0 I PIASEIROLT A

AU L3 Yot TSRS P

AL AR
Y35 fliad

il

BB

ungesdun 555

ey yEgeieng

Ayniesaiy wewg 4y

v uisvss B 000

U.S. Patent Jan. 5,2016 Sheet 9 of 9 US 9,229,842 B2

Commence Performance Testing of
a Target Website by Ramping a
Number of Virtual Users Loading

One or More Web Pages

l

Aggregate Test Results in Real-time
from Execution of Test Composition

l

Aggregate the Aggregated Test
Results for All Virtual Users —~. 93
in Real-time

l

QOutput the Aggregated Test Metrics
in a Waterfall Chart that Actively
Changes in Real-ime as the
Test Composition Progresses

b~ 91

~ 92

- 94

FIG. 9

US 9,229,842 B2

1
ACTIVE WATERFALL CHARTS FOR
CONTINUOUS, REAL-TIME VISUALIZATION
OF WEBSITE PERFORMANCE DATA

RELATED APPLICATIONS

This application is a continuation-in-part (CIP) application
of Ser. No. 12/804,338 filed Jul. 19, 2010 entitled, “REAL-
TIME, MULTI-TIER, LOAD TEST RESULTS AGGREGA-
TION”, which is assigned to the assignee of the present CIP
application.

TECHNICAL FIELD

The present disclosure relates generally to methods and
apparatus for processing data generated from load testing of
websites or browser-based applications. Still more particu-
larly, the present disclosure relates to methods, apparatus and
executable computer instructions for generating waterfall
charts as a performance analysis tool.

BACKGROUND

In recent years, enterprises and developers have sought an
easy and affordable way to use cloud computing as a way to
load and performance test their websites and web-based
applications. Cloud computing gets its name from the fact
that the machine, storage, and application resources exist on
a “cloud” of servers. In cloud computing shared resources,
software and information are provided on-demand, like a
public utility, via the Internet. Cloud computing is closely
related to grid computing, which refers to the concept of
interconnecting networked computers such that processing
power, memory and data storage are all community resources
that authorized users can utilize for specific tasks.

A web site is simply collection of files on a remote server.
When a user accesses a website via a browser, Hypertext
Transfer Protocol (HTTP) or HTTP Secure (HTTPS) mes-
sage intercommunications take place with the target website.
In very simple terms, when a user wishes to view a webpage,
HTTP requests each of the various files or objects that make
up the webpage. These objects may include text, images,
JavaScript files, etc. Each of these objects is typically deliv-
ered from the host server to the user’s browser in a serial
manner. That is, a series of communicative actions needs to
occur between the browser and server in order for the user to
view a specific page of a website. Essentially, the files and
objects which comprise the webpage are loaded one-by-one.
Due to the request-and-response nature of HT'TP, there is a
latency associated with each file that is loaded.

Load testing a web-based application or website can
involve simulating a very large number (e.g., up to or beyond
1,000,000) of virtual website users via HT'TP or HTTP
Secure (HTTPS) message intercommunications with a target
website. For very large tests, sending and aggregating the test
results data generated from all of the load servers to a data-
base available to a dashboard in real-time has been problem-
atic. The huge overhead of receiving and processing a very
large number of HTTP messages containing all of the
requests and responses sent from each of the many load
servers to the analytic servers responsible for analyzing the
test results data can easily overwhelm the resources of the
server. In addition, communications bottlenecks can occur
wherein messages get queued up in long stacks or lines, such
that the test results are no longer sent to the database in
real-time, and therefore are not available in the dashboards in
real-time. In extreme cases, the load test servers can also back

20

25

30

35

40

45

50

2

up, causing them to not generate the appropriate load on the
customers’ websites or web applications.

A waterfall chart is another visual tool that developers and
businesses use to analyze webpage performance. Waterfall
charts are diagrams that allow a user to visualize data that is
generated cumulatively and sequentially across the process of
loading a webpage. A waterfall chart for a website provides
the user with a visual representation of all of the series of
actions that occur between a user’s browser and the website
server when that user wishes to view a specific page of the
website. A typical waterfall chart consists of a series of col-
ored bars that extend horizontally across a timeline. Each of
the colored bars represents a different activity that happens as
the associated object is delivered to the user’s browser. For
example, a dark green bar may represent a Domain Name
System (DNS) lookup wherein the browser looks up the
domain of the object being requested. An orange bar may
represent a Transmission Control Protocol (TCP) connection
process by which the browser and server send and receive
acknowledgement that a connection has been made. A bright
green bar may represent the so-called “time to first byte”; the
window of time between when the browser asks the server for
content until the first byte of content is received back. A blue
bar may be used in a waterfall chart to indicate the time it
takes for the entire content to be sent from the server to the
browser.

One problem with existing waterfall charts is that they are
entirely static, meaning that once the webpage is fully loaded
the timeline information shown by the various colored bars is
static on a per user basis, i.e., it does not change. A more
useful metric to a developer or website owner would be an
active waterfall chart that aggregates and updates website/
webpage performance on a continuous, real-time basis across
a changing number of virtual users and/or multiple webpages
associated with a target website.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will be understood more fully from
the detailed description that follows and from the accompa-
nying drawings, which however, should not be taken to limit
the invention to the specific embodiments shown, but are for
explanation and understanding only.

FIG. 1 illustrates an example high level architectural dia-
gram of one stage of a CloudTest® provisioning process.

FIG. 2 illustrates an example high level architectural dia-
gram of another stage of a Cloudiest® provisioning process
after the cross-cloud grid has been fully allocated and
checked.

FIG. 3 is an example block high level architectural diagram
that illustrates how, in real-time, load test results are aggre-
gated at multiple different tiers or levels.

FIG. 4 illustrates an example graphical user interface win-
dow that shows real-time results of a test composition running
on an example grid.

FIG. 5 is an example flow diagram of an automated
sequence of steps for aggregating load test results at multiple
different tiers or levels.

FIG. 6 is an example graphical user interface window that
illustrates an active waterfall chart showing aggregated
results for a plurality of virtual users at a first point in time
during execution of a load test.

FIG. 7 is an example graphical user interface window that
illustrates an active waterfall chart showing aggregated
results for a plurality of virtual users at a second point in time
during execution of a load test.

US 9,229,842 B2

3

FIG. 8 is an example graphical user interface window that
illustrates an active waterfall chart showing aggregated
results for a plurality of virtual users at a third point in time
during execution of a load test.

FIG. 9 is an example flow diagram of a sequence of steps
for producing an active waterfall chart with aggregated test
metrics in real-time.

DETAILED DESCRIPTION

In the following description specific details are set forth,
such as server types, cloud providers, structural features,
process steps, visual objects, charts, etc., in order to provide a
thorough understanding of the subject matter disclosed
herein. However, persons having ordinary skill in the relevant
arts will appreciate that these specific details may not be
needed to practice the present invention. It should also be
understood that the elements in the FIG.s are representa-
tional, and are not drawn to scale in the interest of clarity.

References throughout this description to “one embodi-
ment”, “an embodiment”, “one example” or “an example”
means that a particular feature, structure or characteristic
described in connection with the embodiment or example is
included in at least one embodiment. The phrases “in one
embodiment”, “in an embodiment”, “one example” or “an
example” in various places throughout this description are not
necessarily all referring to the same embodiment or example.
Furthermore, the particular features, structures or character-
istics may be combined in any suitable combinations and/or
sub-combinations in one or more embodiments or examples.

In the context of the present application, the term “cloud”
broadly refers to a collection of machine instances, storage
and/or network devices that work together in concert. A “pub-
lic cloud” refers to a cloud that is publically available, i.e.,
provided by a cloud provider that a user may access via the
Internet in order to allocate cloud resources for the purpose of
utilizing or deploying software programs, and also for run-
ning or executing those programs thercon. Some public
clouds deliver cloud infrastructure services or Infrastructure
as a Service (laaS). By way of example, Amazon Elastic
Compute Cloud (also known as “EC2™”) is a web service
that allows users to rent computers on which to run their own
computer applications, thereby allowing scalable deploy-
ment of applications through which a user can create a virtual
machine (commonly known as an “instance”) containing any
software desired. The term “elastic” refers to the fact that user
can create, launch, and terminate server instances as needed,
paying by the hour for active servers.

Cloud platform services or “Platform as a Service (PaaS)”
deliver a computing platform and/or solution stack as a ser-
vice. An example PaaS cloud provider is the Google App
Engine, which lets anyone build applications on Google’s
scalable infrastructure. Another leading software platform in
the cloud provider is Microsoft Azure™, an application plat-
form in the cloud that allows applications to be hosted and run
at Microsoft datacenters.

A “private cloud” is a cloud that is not generally available
to the public, and which is typically located behind a firewall
of a business. Thus, a private cloud is only available as a
platform for users of that business who are behind the fire-
wall.

The term “server” broadly refers to any combination of
hardware or software embodied ina computer (i.e., a machine
“instance”) designed to provide services to client devices or
processes. A server therefore can refer to a computer that runs
a server operating system from computer-executable code
stored in a memory, and which is provided to the user as

10

20

25

30

40

45

55

4

virtualized or non-virtualized server; it can also refer to any
software or dedicated hardware capable of providing com-
puting services.

A “message” generally refers to a unit of data that can be
sent via an electronics communications network, e.g., the
Internet, to another computational or communications system
or device, e.g., to a server. By way of example, a message
could represent a communication sent to a queuing system, a
REST call, or a Hypertext Transfer Protocol (HTTP) request.
A message could also be instantiated entirely or partially as a
single operation, such as a web service call in any one of a
variety of forms, e.g., XML, JMS, HTML, JSON, etc. A
“message clip” (or “clip” for short) comprises a set of one or
more messages that includes a specification of the location,
timing and/or dependencies of objects or elements specified
within that set of messages. A clip typically comprises a
plurality (e.g., hundreds or thousands) of sequenced mes-
sages that form part of a larger load test composition.

Inthe context of the present disclosure, “load” servers (also
referred to as “Maestro” or “test” servers) are servers
deployed and utilized primarily to generate a test load on a
target website. That is, load servers play the test composition,
generating a load on a target (customer) website and web
applications. LLoad servers also function to report back results
of the load test and statistics in real-time. “Analytic” or
“result” servers are deployed and utilized primarily to collect
the real-time test results from the load servers, aggregate
those results, stream the results to real-time dashboards, and
store them in a database.

The term “real-time” refers to a level of computer respon-
siveness that a user senses as sufficiently immediate or that
enables the computer to keep up with some external process
(for example, to present visualizations of load test results as it
constantly changes). Thus, real-time is a mode of computer
operation in which the computer collects data, analyzes or
computes with the data, reports (e.g., visually displays) and/
or stores the results nearly simultaneously, i.e., within sec-
onds or milliseconds.

A “grid” or “test grid” refers to a collection of intercon-
nected load servers and result servers that may be used to run
a load test on a target website or web applications. As dis-
closed herein, a computer program or grid wizard may be
utilized to automatically determine the global, cross-cloud,
resources needed to execute a test by examining the test plan
or script (also referred to as a test composition). Furthermore,
the computer program can automatically allocate those server
resources required for the test across multiple different cloud
providers; verifies that the allocated servers are operational;
and that the allocated servers are running proprietary load
testing software or computer program product correctly. The
computer program or product also monitors the allocated
servers, replacing non-operational servers (when allocated,
and during execution of the test) and displays results from
multiple globally distributed clouds in a real-time streaming
dashboard, which requires no user initiated refresh.

In the context of the present disclosure, a “waterfall chart”
refers to a diagram that allows a viewer to visualize data that
is generated cumulatively and sequentially across a process.
As they relate to website performance, waterfall charts are
used to let someone see the series of actions that occur
between a user and a server in order for that user to view a
specific webpage (“page” for short) of a particular website.
Each row of a waterfall chart for a website typically repre-
sents a different object, i.e., text, image, JavaScript files, etc.,
contained on a given page. For instance, an average webpage

US 9,229,842 B2

5

may typically include 40-80 different objects and files that
need to be delivered from the remote server to the user’s web
browser.

In one embodiment, a method and system is provided for
calculating load test aggregated test results at three architec-
tural levels: first, at the load server level; second, at the ana-
Iytics server level; and lastly at the system-wide data-store
level. In a specific implementation, detailed level “raw” data
(the content of a request sent to a website e.g., to access a
homepage) is not sent from any of the load servers to any
analytic server. Thus, system resources on the load server side
are not wasted for the continual sending of raw data. Simi-
larly, system resources on the analytics server side are con-
served since the need to receive and process raw data sent
from the load servers is obviated.

Instead of sending the raw data (web pages’ responses and
their statistics) obtained during a load test from each of the
load servers to the analytic servers, a level of aggregation is
added within each of the load servers. That is, in one embodi-
ment, each load server includes an embedded component or
client (referred to as a Results Service Client) that performs
analytics server functions at the load server level. This Results
Service Client aggregates test result data and generates vari-
ous results statistics or metrics, e.g., average response time,
average response size, average time to first byte, etc., from the
raw data that the load server received from the target website
or application. The statistics computed by the Results Service
Client in each of the load servers are then sent to their asso-
ciated analytic server at periodic intervals (e.g., once every
five seconds).

In another embodiment, a user interface is provided that
allows a user to display a waterfall chart on an analytic dash-
board that aggregates and updates website/webpage perfor-
mance on a continuous, real-time basis across a changing
number of virtual users and/or multiple webpages associated
with a target website.

FIG. 1 illustrates an example high level architectural dia-
gram of one stage of a CloudTest® provisioning process,
which is the name given to the application program or grid
wizard program utilized to load test a target website 12. As
shown, target website 12 includes a plurality of web servers
17 coupled to Internet cloud 15 through a load balancer 18
and a firewall 19. Web servers 17 are interconnected with a
plurality of application servers 16 and a plurality of database
servers 14.

Target website 12 is shown connected to a public cloud 11
via Internet cloud 15. Public cloud 11 includes a main
instance 23 coupled to a database 24. Database 24 may be
used to store test results, store metadata indicative of the test
definition, and to store monitoring data (e.g., CPU metrics)
generated during the load test. Main instance 23 is also shown
coupled to a pair of analytic servers 22 and a pair of load
servers 21 within cloud 11, consistent with a snapshot view of
the start of a process of deploying a test grid. It is appreciated
that cloud 11 may comprise multiple clouds associated with
multiple different cloud providers. In the example shown,
main instance 23 is a virtual machine deployed on a server
provided in cloud 11 that communicates with a browser appli-
cation. In one embodiment, main instance 23 may include a
results service (designated as a “reader’results service, as
opposed to all of the other remote, “write”results services)
which reads data from database 24 and serves it to a web
application, which in turn formats the data and serves it to an
analytic dashboard in the browser. In operation, main instance
23 executes the coded sequence of computer executed steps
(e.g., from code stored in a memory) that allocates the server
resources required for the test across one or multiple different

15

25

30

40

45

55

6

cloud providers. The same application that allocates / verifies
server resources may also verify that the allocated servers are
operational to conduct the website load test. The main
instance may also execute code that implements the multi-
tiered load test results aggregation steps disclosed herein.

Additionally, main instance 23 may also execute code that
generates the GUI described herein that allows a user to
generate a continuous (i.e., looping) waterfall chart in real-
time on the screen for large number of virtual users.

Connected to the front-end of cloud 11 through Internet
cloud 15 is a laptop computer 20 associated with a user who
may orchestrate deployment of the test of target website 12. It
is appreciated that in other implementations, computer 20
may comprise a desktop computer, workstation, or other
computing device that provides a graphical user interface that
allows a user to create and execute the test composition,
define the parameters of the grid, initiate the load test, as well
as analyze/review results of the test in real-time. This GUI
also provides the ability to creating a continuous, real-time
waterfall chart for visual display to the user. The GUI may be
web-based so it can be accessed from any computer having
web-browser capabilities from any location in the world,
without installation of specialized software.

Persons of skill in the art will understand that the software
which implements main instance 23 may also be downloaded
to theuser’s laptop computer 20 or implemented on a separate
hardware appliance unit located either at the user’s premises
(e.g., behind the firewall) or anywhere in clouds 15 or 11. It is
further appreciated that laptop 20 is representative of a wide
variety of computer devices, such as workstations, personal
computers, distributed computer systems, etc., that may be
utilized by the user to launch the method for provisioning/
running the cross-CloudTest grid, analyzing streaming real-
time results, monitoring the performance of the actual load
test, and generating one or more charts (e.g., waterfall) for
visual display on an analytic dashboard. In other words, the
GUI described herein may also run on a computer or data
processing system local to the user.

The computers, servers, and computing devices described
and referenced herein may comprise any of the computers,
servers, or electronic processing devices for coupling or con-
nection with a communications network. Such devices typi-
cally comprise a number of basic subsystems including a
processor subsystem, a main memory and an input/output
(I/0) subsystem. Data may be transferred between the main
memory (“system memory”) and the processor subsystem
over a memory bus, and between the processor subsystem and
1/O subsystem over a system bus. Computing devices may
also comprise other hardware units/modules coupled to the
system bus for performing additional data processing, algo-
rithmic or communication functions. Alternatively, these
functions may be performed by one or more processors of the
processor subsystem, which typically comprises one or more
processors.

Continuing with the example of FIG. 1, the application
program running on main instance 23 operates to create a GUI
that allows a user of laptop 20 to remotely interact with the
application, view/monitor the test results in real-time, and
modify parameters test conditions dynamically during the
actual test. (For purposes of the present disclosure, the grid
wizard is considered synonymous with the application pro-
gram or system program that performs the method and opera-
tions described herein.) In one embodiment, main instance 23
may include an embedded load server for running a relatively
small load test that does not require the deployment of other
load servers, and an embedded results i.e.,(analytic) server for
collecting/aggregating the real-time test results. In another

US 9,229,842 B2

7

embodiment. the main instance and the database provide a
basic Cloudiest testing environment that can be used to
launch/establish one or more grids, with one or more cloud
providers being utilized to provision each grid.

The overall testing process begins with the user creating a
sophisticated test plan or composition via a GUI of either the
same application program running on main instance 23 or a
GUI associated with another web browser application. The
GUI may be utilized that generate complex parallel message
streams for website testing. In one example, the test plan may
be created in the form of a visual message composition
(analogous to a music composition) for testing and demon-
strating web services, such as that described in U.S. patent
application Ser. No. 11/503,580, filed Aug. 14, 2006, now
U.S. Pat. No. 7,844,036, which is herein incorporated by
reference.

The process of deploying the test grid for a large-scale test
may start with the user of laptop 20 indicating to main
instance 23 the number of virtual users wanted on each track
of the test composition. For example, the user of the system
may wish test the target website with a load equal to 1000
users on each track of a test composition. The user may
indicate the number of virtual users through an input entered
on a browser page of the GUI (as described below), or, alter-
natively, invoke a grid wizard that automatically makes an
intelligent allocation of the proper amount of resources
needed to conduct the test, based on examining the composi-
tion that this grid will be running. By way of example, the
system may determine that a single load server should be
allocated to accommodate every 1000 virtual users.

Similarly, the system (via a grid wizard) may determine a
proper allocation of result servers needed to accommodate
the number of load servers specified. In one implementation,
users can specify how many load servers and how many result
servers they want in each cloud and region. Alternatively,
users may employ the grid wizard to specify all parameters.
That is, users can simply specify a defined test composition,
and the grid wizard automatically analyzes the composition
and determines how many servers they need in each cloud and
region. It is appreciated that the determination of the number
of'load servers and result servers is typically made based on
considerations that ensure each virtual user has a satisfactory
amount of bandwidth, CPU & memory resources, etc., such
that it correctly simulates or behaves as a real-world browser.

Once the test has been defined and the parameters set (e.g.,
number of servers, server locations, etc.) via the grid wizard,
upon user input, the user main instance 23 starts the process of
actually deploying and allocating the specified resources by
interacting with an application programming interface (API)
of one or more cloud providers. By way of example, a user
may click on a “Deploy Instances™ button provided in a page
of the CloudTest load testing program GUI; in response, the
system software contacts all of the different cloud APIs it
needs and starts to allocate the required servers.

For example, if 1000 servers are to be allocated in EC2
there may be 40 simultaneous requests issued, each request
being for 25 servers. If another 200 servers need to be allo-
cated in Microsoft Azure in two different geographically-
located data centers, two simultaneous requests may be
issued, each for 100 servers in each data center (due to the fact
that Azure does not support allocating smaller groups into one
single deployment). In other words, the user may simply click
on an icon button of'a GUI to initiate the deployment/alloca-
tion of resources (e.g., machine instances) needed to execute
the test composition, with the requests necessary to achieve
that allocation being issued/handled in an automated manner,
i.e., without user intervention.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 1 show the beginning of this process, wherein a first
pair ofload servers 21 and analytic servers 22 (also referred to
as result servers or results services) have already been allo-
cated and deployed on the grid.

FIG. 2 illustrates an example high level architectural dia-
gram of a later stage of a CloudTest test grid provisioning
process, which may be after the cross-cloud grid has been
fully allocated and checked. For reasons of clarity, an array of
just fifty-four interconnected load servers 21 are shown allo-
cated per each result server 22 in the example of FIG. 2. It is
appreciated, however, that the system and method described
herein is highly scalable and capable of deploying/allocating
a massive amount of resources including hundreds or thou-
sands of load servers as well as a corresponding portion or
ratio of result servers, depending on the parameters specified
by either the user or system prior to deployment of the grid.
By way of example, a typical ratio of analytic (result) servers
to load (maestro) servers is 1:50. As discussed previously, a
grid—whether cross-cloud or single cloud—is a collection of
load servers 21 and result servers 22, all of which (or a subset
of) can be used to run a load test in concert.

FIG. 3 is an example block high level architectural diagram
that illustrates how, in real-time, load test results are aggre-
gated at multiple different tiers or levels. As shown, block 27
represents a browser that provides real-time test analytics to a
user (e.g., via laptop 20 shown in FIG. 1, or other computer
device). Browser 27 is shown connected with main instance
23, which, in turn, is coupled with database 24. Database 24
provides system-level storage for aggregated test result data
received from the Results Service servers 22. Database 24
receives aggregated test result data via a direct connection to
each of the plurality of result servers 22.

Each of result servers 22 is connected to a plurality of
associated load (Maestro) servers 21. Each load server 21 is
shown having an embedded component or Result Service
client 25, which computes metrics or statistics from the raw
data (e.g., web pages) received from the target website or
application. As discussed previously, the function of each
load server 21 is to provide a load to the target website by
creating one or more virtual users that access information on
the target website. Within each Maestro server 21 is Result
Service client 25 which functions to compute statistics such
as average response time, average response size, and the like.
In one embodiment, instead of sending all of the raw data
received from the target website, Result Service client 25
computes relevant statistics and discards the data. Then, once
an interval (e.g., every five seconds) the statistics computed
by client 25 are sent to the associated result server 22.

Each of the result servers takes all of the statistics received
from all of its associated load servers 21 and further aggre-
gates those statistics. In other words, each result server 22
aggregates the aggregated results received from all of the load
servers 21 that it is connected to. The resulting aggregated
data is then further aggregated when querying database 24.
Thus, statistics such as average response time across all of
load servers 21 for the load test is stored in database 24 and
available on a real-time basis to browser 27, via database
queries performed by the main instance 23, which can per-
form further aggregation, grouping, filtering, etc.

Practitioners in the art will appreciate that aggregating
statistical results data on multiple levels, beginning at the
point closest to the actual load test results’ creation, allows a
user to view results in real-time on an analytic dashboard
GUI, thereby permitting real-time analysis across the entire
testing infrastructure.

In a specific implementation, each load server 21 includes
a Result Service client 25, which in turn includes accumula-

US 9,229,842 B2

9

tors that stores the statistically aggregated data (e.g., average
response time) computed on a second-by-second basis. Peri-
odically (e.g., every 5 seconds), each Result Service client 25
sends an appropriate number of messages (e.g., 5 messages,
one for each second) to its associated result server 22. That is,
one batched message is sent every 5 seconds—the batched
message including data about all of the previous 5 seconds.
Each message contains the data metrics computed every one
second interval. These fine granularity metrics are then fur-
ther aggregated in database 24. It is appreciated that by com-
puting statistics/metrics on a second-by-second basis, the
analytic dashboard running on browser 27 can analyze the
results on various levels of granularity. In other words, the
user may want to view statistical results of the load test on a
minute-by-minute basis, or all the way down to a second-by-
second basis. Thus, the architecture described herein allows a
user to view real-time streaming results in an analytic dash-
board of various performance test metrics on a second-by-
second basis, even when there are millions of virtual users on
thousands of load servers.

FIG. 4 illustrates an example graphical user interface win-
dow (also referred to as “widget”) 40 that shows real-time
results of a test composition running on an example grid. In
other words, monitor summary widget 40 provides the user
with visibility into the load that the test is creating on the grid
server instances. (In the context of the present disclosure, a
widget refers to a super class of charts—anything that a user
might want to display graphically on a user interface. A wid-
get can be a cross-set of results data, a set of charts, a list of
data, or any combination/correlation of data displayed on the
analytic dashboard.)

As shown, a set of combined charts are shown graphically
in various window fields. For example, field 41 illustrates the
number of virtual users (shaded area) and the send rate (heavy
line) as a function of test time. As can be seen, the number of
virtual users is ramped up from zero to a final total number
(e.g., 10,000) over a span of time (e.g., S0 minutes). The
example shown in field 41 shows the load test continuing for
an additional time period after the number of virtual users
reaches a peak (or final) number. Practitioners in the art will
appreciate the usefulness of charting a test metric over time as
the number of virtual users slowly ramps up. For instance, a
developer or website owner can easily observe, in real-time as
the load test is actively running, the aggregate performance
result of the target website as the number of virtual users
increases from zero users to a very large number of users over
an extended time period.

Field 42 illustrates error count (vertical dark lines) and the
number of virtual users (shaded area) versus test time. Field
43 shows the number of bytes sent and received (vertical dark
lines) and the number of virtual users (shaded area) as a
function of test time. It is appreciated that the user may
select/view a wide variety of charts (combined, correlated,
etc.) using tabs 45. Collectively, the charts provided in win-
dow 40 allow a user to view, analyze, and monitor test results
and information in real-time so as to help identify root causes
of performance problems their website or web application
may be experiencing.

Persons of skill in the arts will appreciate that F1G. 4 shows
how the entire test grid (comprising a huge number of inter-
connected load and result servers) works in concert to send
load, receive responses, aggregate and analyze those
responses into a real-time streaming graphical result dis-
played to the user. All this is accomplished regardless of how
many server instances and different cloud providers are uti-
lized to run the load test. Moreover, the various result charts
may be viewed in one or many real-time streaming analytic

20

25

40

45

10

dashboards. In each of the charts displayed on analytic dash-
board window 40, the user may change the time format or
legend of the horizontal axis for reporting the testing analytics
in real-time on a varying time (e.g., hour-by-hour, minute-by-
minute, or second-by-second) basis.

During the playback of the test composition and while the
user is monitoring/viewing the test results displayed on GUI
window 40, the user may pause or stop the test. Stopping the
test closes the result and unloads the running test composition
from all of the load servers. On the other hand, pausing or
temporarily halting the test stops the load from all of the load
servers, but keeps the test composition loaded and ready to
resume playing into the same result. For example, the user
may temporarily halt or pause the test after identifying a
problem that requires adjustment of the load balancer on the
target website. It should be understood that when the test is
temporarily halted in this manner, the grid remains fully
provisioned and running. In other words, the composition and
running of the load test is independent from the provisioning
and running of the grid. After any adjustments or reconfigu-
ration of the target website, the user may continue with the
execution or playback of the test composition, either begin-
ning at the place where it was halted, or re-starting the test
from the beginning. Persons of skill in the art will appreciate
that the ability to start/re-start the test without affecting the
state of the grid, in conjunction with the ability to view test
results metrics in real-time (e.g., second-by-second) provides
a powerful advantage over prior art methods for testing a
customer website.

The GUI described herein also allows a user to create an
active waterfall chart that functions as an analytical tool with
the chart displaying results aggregated in real-time across a
large number of virtual users who are continually loading one
or more webpages over-and-over again. In the case of an
active waterfall chart, more fine grained information is col-
lected than just average response time. That is, test result
information is collected within each resource (e.g., blocking,
DNS look-up, connection, sending, waiting, receiving, etc.)
In other words, the information collected is even more finely-
grained than simply providing an average time it takes to load
a given webpage across a given number of virtual users. For
instance, an active waterfall charts may visually provide
information regarding average time to load individual objects
and files within the page (e.g. a specific JavaScript file) or the
average DNS lookup time across all the virtual users for a
specific object of a webpage. Additionally, the multi-tiered
architecture described herein is advantageously utilized to
produce an active waterfall chart in real-time, i.e., as the load
test is running, with the information displayed changing in
real-time as the test progresses (continuously in the case
where the test keeps looping and loading one or more
webpages over and over again).

As described above, a user or application developer view-
ing an active waterfall chart of one or more webpages running
in a browser window may identify one or more slowest
resources, pause the test, optimize the website and/or specific
webpages, and restart the test to generate a new active water-
fall chart following the optimization.

FIG. 5 is an example flow diagram of an automated
sequence of steps for aggregating load test results at multiple
different tiers or levels. This example method may be used to
create any of the graphical charts, including an active water-
fall chart, described herein. The example method begins at a
point where the load test grid is up and running, and the test
composition is being executed on the target website. As the
load test progresses, within each load server, a component or
client periodically calculates or computes aggregated test

US 9,229,842 B2

11

results from the raw load test data generated from the target
website. (Block 51) The raw data may comprise HTTP,
Simple Object Access Protocol (SOAP) or other protocols
messages’ responses received from the target website,
whereas the aggregated test results may comprise any statistic
or metric of interest. The periodic interval that the aggregated
test results are computed for may vary. For example, results
may be computed every seconds.

The aggregated test results computed by the chant running
on each load server are periodically sent to their associated
analytic server. (Block 52) The period at which the aggre-
gated results are sent to the analytic servers may be equal to or
greater than the period at which the aggregated test results are
computed within each load server. In a typical implementa-
tion, aggregated test result data is computed by each load
server every second, with the results of those computations
being sent to the analytic servers from each of the load servers
every five seconds.

Next, at each analytic server the aggregated test result data
received from each of the associated load servers is further
aggregated. In other words, each analytic server produces
aggregated test result data across all of its associated load
servers. (Block 53) For example, if each analytic server is
associated (i.e., connected) with fifty load servers, each ana-
Iytic server aggregates statistics/metrics across the aggre-
gated test result data received from each of the fifty load
servers.

Finally, at block 54, the aggregated data produced by each
analytic server is further aggregated at the system-wide data
store in real-time. For instance, Structured Query Language
(SQL) queries to the database can perform aggregation func-
tions (e.g., AVG, SUM, etc.) against tables’ rows that have
been inserted from the individual analytics servers, thereby
producing further (third-level) aggregated results.

As explained above, the results of this final level of aggre-
gation are available in real-time to a browser executing an
analytic dashboard that provides a graphical display of the
multiple results in various charts. The results are maintained
in the dashboard in real time, since the browser continues to
produce the latest changes in each result set by querying the
database for all of the rows that have changed since the last
time that the queries ran.

A “delta-change” document containing updated data and
statistics may be produced and sent to the browser, which
merges the changes into the currently displayed chart. In one
embodiment, if the multi-result chart is combined or corre-
lated, the dashboard may produce more than one delta-change
document and merge all of the different changes into the
multi-result chart. If the multi-result chart is correlated, the
widget code may wait or pause until both data points (from
each result set) are available for a given point in time. In other
words, a new point is shown in the statistical correlation chart
once the data is available for each result set.

FIG. 6 is an example graphical user interface window 61
that illustrates an active waterfall chart showing aggregated
results for a plurality of virtual users at a first point in time
during execution of a load test. Note that GUI window 61
shows a “Play” tab of a CloudTest platform selected, which
runs or plays a test composition that results in active waterfall
chart 64 being generated on dashboard 62. Clip Element
Hierarchy area 63 shows that the Main Page of a SOASTA™
Store Clip test composition has been selected. This test com-
position runs one or more webpages of the domain www-
.soastastore.com, as indicated under the “Domain” heading
on the far left-hand side of active waterfall chart 64.

As shown, each line or row of the waterfall chart illustrates
a horizontal timeline associated with each “GET” of an

10

15

20

25

30

35

40

45

50

55

60

65

12

object, file, or resource identified under the Uniform
Resource Locator (URL) heading. The timeline associated
with each row of active waterfall chart advances from left-to-
right in real-time as the test composition progresses and/or
loops. As can be seen, each timeline consists of a series or
sequence of horizontal bars that are shaded so as to indicate
the various operations or functions performed. For instance,
in the implementation shown, positioning the cursor over one
of'the timelines produces a key 65 that shows the constituents
or components of the timeline along with the associated total
time aggregated for all of the virtual users currently partici-
pating in the load test. For example, key 65 illustrates com-
ponent times for Blocking, DNS Lookup, Connecting, Send-
ing, Waiting, and Receiving for the selected object, file, or
resource. The far right-hand column of key 65 also lists the
cumulative time (again aggregated over the total virtual users)
currently expended to GET that particular object, file, or
resource. Note that the example snapshot of GUI window 61
shown in FIG. 6 is taken 760 milliseconds after commencing
the load test.

FIG. 7 is an example GUI window 71 that illustrates an
active waterfall chart showing aggregated results for a plural-
ity of virtual users running the same test composition on the
same target website/webpage(s) as previously shown in FIG.
6, but at a second point in time during execution of the load
test. As shown, the example GUI window 71 is a snapshot
taken 2787 milliseconds after the start of the load test. Simi-
larly, FIG. 8 is an example GUI window 81 that illustrates an
active waterfall chart for the same load test/target website/
webpage(s) as previously shown in FIGS. 6 & 7, but at a third
point in time, i.e., at 4147 milliseconds.

Persons of ordinary skill will appreciate that the informa-
tion provided in the active waterfall chart illustrated in the
example GUI window snapshots of FIGS. 6-8 changes in
real-time as the load test runs. That is, to a user viewing the
waterfall dashboard on a display screen, the various timeline
bars would appear to advance horizontally and change in
real-time as the test progresses and/or loops. Persons of skill
will further appreciate that the number of virtual users par-
ticipating in the load test may range anywhere from a very few
(e.g., tens) to a very large number (e.g., tens of millions). A
typical load test ordinarily is designed to ramp up from zero
users to a final total number of users (e.g., a million) over a
certain period of time (e.g., 1-2 hours). Thus, the active water-
fall chart generated on the user’s analytic dashboard allows
the user to visually see exactly how the target website/
webpage(s) perform during the ramp up period of the test
composition where the number of virtual users slowly
increases. The achievement of an active waterfall chart that
provides aggregated results across all of the virtual users in a
real-time analytic dashboard provides a user with a powerful
ad hoc analytical/investigative tool to better understand the
performance of a target website.

FIG. 9 is an example flow diagram of a sequence of steps
for producing an active waterfall chart with aggregated test
metrics in real-time. The example method begins at block 91
where the performance or load test of the target website
begins ramping up the number of virtual users from zero to
some final number. Each of the virtual users is implemented
by a load server that executes a test composition on the target
website. In the case of an active waterfall chart, each virtual
user is loading one or more webpages into a virtual web
browser, which involves loading all of the various resources
(e.g., objects, files, etc.) associated with the webpage(s). Each
load server includes a component or client that periodically
calculates or computes aggregated test results in real-time
from the raw load test data generated from execution of the

US 9,229,842 B2

13

test the target website. (Block 92) For example, the aggre-
gated test results may comprise information collected and
statistics (e.g., averages across all virtual users associated
with a particular load server) generated about each resource.
This information may include Blocking, DNS look-up, con-
necting, sending, waiting, and receiving times.

Next, the aggregated test results computed by the client
running on each load server are periodically sent to a tier of
associated analytic or results servers. There, at each analytic
server the aggregated test result data received from each of the
associated load servers is further aggregated to produce
aggregated test metrics for all the virtual users in real-time.
(Block 93) In one implementation, aggregated test result data
is computed by each load server every second, with the results
of'those computations being sent to the analytic servers from
each of the load servers every 2-5 seconds.

The aggregated results across all of the virtual users may be
output in real-time to a browser providing an analytic dash-
board that provides a GUI that outputs aggregated results
streaming in real-time of the load test performed on a target
website. An active waterfall chart is produced (i.e., displayed)
on the analytic dashboard that includes a plurality of timeline
bars, each of the timeline bars representing an aggregated
result for a resource of the one or more webpages across all of
the virtual users. The timeline bars change in real-time as the
load test progresses. For instance, the timeline bars typically
advance horizontally from left to right as the test time
increases and the number of virtual users ramps up. Each of
the timeline bars consists of a plurality of timeline activities
(e.g., Blocking, DNS look-up, connecting, sending, waiting,
and receiving times).

The aggregated test results are maintained in the dashboard
in real time, since the browser continues to produce the latest
changes in the multiple rows of horizontal timeline bars dis-
played in the active waterfall chart. That is, to a user viewing
the active waterfall chart each of the horizontal timeline bars
appear to move and change continuously in real-time in
accordance with the aggregated information about the asso-
ciated webpage resource as the load test continues to run.
(Block 94)

It should be understood that elements of the disclosed
subject matter may also be provided as a computer program
product which may include a machine-readable medium hav-
ing stored thereon instructions or code which may be used to
program a computer (e.g., a processor or other electronic
device) to perform a sequence of operations. Alternatively,
the operations may be performed by a combination of hard-
ware and software. The machine-readable medium may
include, but is not limited to, floppy diskettes, optical disks,
CD-ROMs, and magneto-optical disks, ROMs, RAMs,
EPROMs, EEPROMSs, magnet or optical cards, or other type
of machine-readable medium suitable for storing electronic
instructions.

Additionally, although the present invention has been
described in conjunction with specific embodiments, numer-
ous modifications and alterations are well within the scope of
the present invention. Accordingly, the specification and
drawings are to be regarded in an illustrative rather than a
restrictive sense.

We claim:

1. A method comprising:

load testing a website with a plurality of virtual users

simulated by a plurality of load servers that execute a test
composition on one or more webpages of the website;
computing, as the test composition executes, by each of the
load servers, aggregated test results in real-time from
execution of the test composition on the website, the

w

40

45

50

55

60

65

14

aggregated test results including statistics calculated by
an embedded component of each load server, the statis-
tics including an average response time;

aggregating, as the test composition executes, the aggre-

gated test results in real-time by one or more analytic
servers to produce aggregated test metrics for all the
virtual users;

providing, as the test composition executes, an analytic

dashboard with a graphical user interface (GUI) that
outputs the aggregated test metrics in real-time in an
active waterfall chart, the active waterfall chart display-
ing information for a series of actions that occur when a
virtual user accesses a particular webpage, the informa-
tion including a statistical time to get an object, file, or
resource of the particular webpage across the plurality of
virtual users, each action being displayed on a separate
row that extends horizontally across a timeline of the
active waterfall chart, the information displayed on the
active waterfall chart changing in real-time as the test
composition progresses.

2. The method of claim 1 wherein the statistical time is an
average time to get the object, file, or resource of the particu-
lar webpage sent from one or more e s associated with the
website to the load servers.

3. The method of claim 1 wherein the series of actions
include a Domain Name System (DNS) lookup time.

4. The method of claim 1 wherein the series of actions
include a Transmission Control Protocol (TCP) connection
time.

5. The method of claim 1 wherein the series of actions
include a time to first byte.

6. The method of claim 1 wherein the series of actions of
the active waterfall chart are displayed as a sequence of col-
ored bars, each of the colored bars represents a different
action that happens as an associated webpage object, file, or
resource is delivered to a virtual user simulated by a load
server.

7. The method of claim 1 further comprising looping the
test composition such that virtual users simulated by the load
servers repetitively request each object, file, or resource of the
particular webpage of the website.

8. The method of claim wherein the analytic dashboard is
provided by a browser application.

9. The method of claim 1 wherein a number of the virtual
users increases over a time period of the test composition.

10. A processor-implemented method comprising:

providing an analytic dashboard with a graphical user

interface (GUI) that outputs aggregated results of a load
test performed on a target website, the load test compris-
ing a plurality of virtual users simulated by a plurality of
load servers that execute a test composition on one or
more webpages of the website, the aggregated results
including statistics computed by an embedded compo-
nent of each load server, the statistics including an aver-
ageresponse time, the aggregated results being streamed
in real-time as the load test is being performed;
producing an active waterfall chart on the analytic dash-
board that displays information for a series of actions
that occur when a virtual user accesses a particular
webpage, the displayed information including a
sequence of timeline bars, each of the timeline bars
being displayed on a separate row of the active waterfall
chart and representing an aggregated result for an action
taken to get an object, file, or resource of the particular
webpage across all of the virtual users, the timeline bars
changing in real-time as the load test progresses.

US 9,229,842 B2

15

11. The processor-implemented method of claim 10
wherein the actions include a Domain Name System (DNS)
lookup time.
12. The processor-implemented method of claim 10
wherein the actions include a Transmission Control Protocol
(TCP) connection time.
13. The processor-implemented method of claim 10
wherein the analytic dashboard is provided by a browser
application.
14. The processor-implemented method of claim 10
wherein a number of the virtual users increases over a time
period of the test composition.
15. The processor-implemented method of claim 10
wherein statistics include an average time to get the object,
file, or resource of the particular webpage.
16. A non-transitory computer-readable storage medium
encoded with a computer program, when executed the com-
puter program being operable to:
load test a website with a plurality of virtual users simu-
lated by a plurality of load servers that execute a test
composition on one or more webpages of the website;

compute, as the test composition executes, by each load
server, aggregated test results in real-time from execu-
tion of the test composition on the website, the aggre-
gated test results including statistics calculated by an
embedded component of each load server, the statistics
including an average response time;

aggregate, as the test composition executes, the aggregated

test results in real-time by one or more analytic servers to
produce aggregated test metrics for all the virtual users;
provide, as the test composition executes, an analytic dash-
board with a graphical user interface (GUI) that outputs

10

15

20

25

30

16

the aggregated test metrics in real-time in an active
waterfall chart, the active waterfall chart displaying
infomiation for a series of actions that occur when a
virtual user accesses a particular webpage, the informa-
tion including a statistical time to get an object, file, or
resource of the particular webpage across the plurality of
virtual users, each action being displayed on a separate
row that extends horizontally across a timeline of the
active waterfall chart, the information displayed on the
active waterfall chart changing in real-time as the test
composition progresses.

17. The non-transitory computer-readable storage medium
of claim 16 wherein the statistical time is an average time to
get the object, file, or resource of the particular webpage sent
from one or more servers associated with the website to the
load servers.

18. The non-transitory computer-readable storage medium
of claim 16 wherein the series of actions includes a Domain
Name System (DNS) lookup time.

19. The non-transitory computer-readable storage medium
of claim 16 wherein the series of actions includes a Transmis-
sion Control Protocol (TCP) connection time.

20. The non-transitory computer-readable storage medium
of claim 16 wherein the series of actions includes a sending
time.

21. The non-transitory computer-readable storage medium
of claim 16 wherein the aggregated test metrics includes a
receiving time.

22. The non-transitory computer-readable storage medium
of claim 16 wherein the aggregated test metrics includes a
waiting time.

